T&D Reliability Study Highlights

- Introduction and Overview
- Transmission System Reliability
- Distribution Reliability
- Investment and Expenditures
- Environmental Regulations
- T&D Reliability Impacts from Policy
- Future T&D Reliability Issues
- Key Findings and Recommendations
Overview of The Electric System
Transmission System Reliability
Distribution System Reliability
Distribution Reliability Metrics

Customer Average Interruption Duration Index (CAIDI)
Number of Customer Hours/Number of Customers Affected

System Average Interruption Frequency Index (SAIFI)
Number of Customer Affected/Number of Customers Served
Distribution Performance

CAIDI for Radial and Network

SAIFI for Radial and Network
Investment and Expenditures
Utility Capital Expenditure ($000s)

Source: DPS
Electric O&M Expenses ($000s)

Source: DPS
Environmental Regulations
Environmental Regulations

- **Existing Rules**
 - NOx RACT Rule
 - Best Available Retrofit Technology (BART) Rule
 - Utility MACT Rule
 - Best Technology Available (BTA) Policy

- **New and Future Rules**
 - Cooling Water Intake Structures
 - Coal Combustion Residuals
 - CO₂ Emission Allowance
Impacts to Reliability
Reliability Impacts From Policies

- **Load**
 - Energy Efficiency
 - Large Load Growth
 - Other Load Varying Mechanisms

- **Generation**
 - Renewable Portfolio Standard
 - Distributed Generation

- **Transmission & Distribution**
 - Bulk Electric System Definition
 - Performance Rate Making, Multi-Year Rate Agreements, and other Departures from Traditional Regulatory Mechanisms

- **Regulatory**
 - Corporate Reorganization of Electric Utilities
Possible Future Reliability Issues

Generation
- Retirements
- Environmental Initiatives
- Nuclear Relicensing
- Market Conditions

Results
- Fuel Mix Issues/Supply Diversity
- Increases natural gas/electric interdependence and need for coordination

Transmission
- Aging Infrastructure
 - 2,300 miles over the next 10 years are nearing design life
 - 1,200 additional miles in next 10 to 20 years

Results
- Increases maintenance and downtime
- Increases risk from unavailability

Load
- Variations
- Smart Grid and Emerging Technologies
- Electric Vehicles

Results
- Transition for both technology and process poses challenges
- Implemented correctly, new technologies could optimize asset use and operational efficiency

External Forces
- Sources
 - Security Threats
 - Geomagnetic Disturbances
 - Aging Workforce

Issues
- Risks known and estimated
- Mitigation measures developed
- Effectiveness unknown
Key Findings and Recommendations

- As assessed using existing metrics, the electric system meets reliability standards
- Allow system planners and operators flexibility in their response to implement state policies
- Support cost-effective replacement of aging infrastructure
- Support diverse mix of electric generation fuel sources
- Monitor gas/electric interdependence
- Encourage workforce development
- Support distributed generation technologies
- Improve storm mitigation, restoration, and communication
Questions?