

State Energy Planning Board Study: NYISO Input and Reliability Analysis

Aug 11, 2009

Contents

Background 3
Integrated Planning Model
/sis3
Reliability Assessment4
Summary6
ndix A: IPM Model Input
mption Matrix7
ndix B: Transmission Topology
11
ndix C: NYISO Reliability
ssment14
MARS Base Case Models 15
MARS Results 17
MARS Results 17 Summary 23
Summary23
Summary23 bit C-1: Base Case Capacity
Summary23 bit C-1: Base Case Capacity fications24
Summary23 bit C-1: Base Case Capacity fications24 bit C-2: Scenario 1 Capacity

I. Background

By Executive Order, Governor David A. Paterson created the State Energy Planning Board (SEPB) in April 2008. The Governor charged the Board with analyzing a broad range of matters related to the State's energy systems, including, but not limited to, the reliability of delivery networks for electricity, natural gas and petroleum products and the interrelated effects of New York's production and use of energy on the State's economy, environment and transportation systems. The Governor's 2009 Energy Plan (Plan) will contain policies, programs and strategies that will address these matters over the 2009 through 2018 planning horizon.

As part of the Energy Plan, an extensive, multi-part computer modeling effort was undertaken to assess the effects of policies and programs recommended for adoption on a range of factors relevant to decision-makers. Among them are: the cost of electricity and capacity; forecasted changes in the electricity and natural gas systems including the transfer capabilities of the transmission grid, and emission levels of greenhouse gases and other pollutants.

The NYISO supported the State's development of the computer modeling effort by providing several technical white papers and reviewing the model assumptions and results.

Based on the results of the Energy Plan assessment, assumptions regarding the retirement or repowering of existing generating units and the installation of new units were made by the SEPB Working Group to meet the future capacity needs of the state and the environmental objectives. The NYISO performed a reliability study using the GE Multi-Area Reliability Simulation (MARS) program version 2.92. The Reliability Study was conducted to verify that the SEPB's assumed capacity modifications would not result in the violation of the Loss of Load Expectation (LOLE) criterion of once in 10 years (or 0.1 per year) as established by the Northeast Power Coordinating Council (NPCC) and the New York State Reliability Council (NYSRC). That criterion establishes that the resources available on the electric system in New York should be sufficient such that the probability of an unplanned outage on the bulk power grid is never greater than once in ten years.

II. Integrated Planning Model Analysis

To support the State's Integrated Planning Model (IPM) analysis, the NYISO performed the following tasks:

- 1. Provided to the State technical white papers in October and November 2008.
- 2. Provided forecasting and other modeling assumptions used in the development of the 2009 Reliability Needs Assessment and 2009

Installed Reserve Margin.

- 3. Reviewed and provided comments to the SEPB Working Group's Assumption Matrix attached in Appendix A.
- 4. Reviewed and provided comments on the SEPB Working Group's transmission topology included in Appendix B.
- 5. Reviewed the SEPB Working Group's results from the IPM model and raised concerns regarding the fuel pricing, imports and exports, capacity levels, environmental allowances and emission levels.
- 6. Reviewed and provided comments on the first draft of the State Energy Planning Board preliminary assessment.

III. Reliability Assessment

A. Process

In order to assess the reliability of the capacity retirements/additions resulting from the IPM study, the NYISO modeled the SEPB Working Group's capacity recommendations in MARS and calculated the LOLE. The SEPB Working Group developed two IPM base case models (Reference Cases). The first utilized the load forecast that was used in NYISO RNA study. This load forecast is based on achieving 30% of the Energy Efficiency Portfolio Standard (EEPS) and is referred to as the "SEPB RNA Case". The second reference case model's load forecast assumes that the full EEPS is achieved and is referred to as the "SEPB 15 x 15 Case". Since this case assumes a lower load forecast than the "SEPB RNA Case", it also assumes approximately 1,500 MW less capacity. The recommended capacity modifications for these two base (reference) cases are included as Exhibit C-1 in Appendix C.

Four study years (2009, 2012, 2015 and 2018) were evaluated in MARS to determine the NYCA and Zonal LOLEs for each base case model.

The following two scenarios were also evaluated for each of the two base cases:

- 1. Addition of Nuclear Capacity Upstate
- 2. 30% Renewable Portfolio Standard

More details regarding the development of the models for the Reliability Assessment are included in Appendix C.

- B. Results
 - 1. Base Models (Reference Cases)

No LOLE violations of 0.1 or greater occurred for all study years for both base cases provided that the assumed load forecast is

achieved. However, if the full 15 x 15 load forecast is not achieved, an LOLE violation may occur for the "SEPB 15 x 15 Case". It was found that utilizing the higher load forecast from the "SEPB RNA Case" in the "SEPB 15 x 15 Case", an LOLE violation of 0.102 would occur in NYCA in 2012 and would increase to 0.627 by 2018.

- 2. Scenarios
 - i. Upstate Nuclear Addition
 - a. A scenario of adding 1,600 MW of generic nuclear power upstate in 2018 was evaluated for each of the base cases. This capacity addition was modeled by prorating the increase among the existing upstate nuclear facilities.
 - b. "SEPB RNA Case"
 - i. In addition to the 1,600 MW upstate nuclear addition, this scenario also included the following capacity modifications as compared to the base "SEPB RNA Case":
 - 1. Retiring of SA Carlson 27 MW in 2012
 - 2. Retiring of Roseton 1 and 2 1,144 MW in 2018
 - 3. Shifted 20 MW of Wind Addition from 2012 to 2015
 - ii. A NYCA LOLE violation of 0.276 would occur in 2018. An LOLE violation in Zones I and J would also occur. Two additional runs were completed to determine the impact of retiring the Roseton units. If both Roseton units are kept in-service, the NYCA LOLE reduces to 0.02. Retiring only one of the units result in a NYCA LOLE of .071. This indicates that the addition of the nuclear capacity upstate is not sufficient to offset the retirement of both Roseton 1 and 2 units.
 - c. "SEPB 15 x 15 Case"
 - i. In addition to the 1,600 MW upstate nuclear addition, this scenario also includes the following retirements as compared to the base "SEPB 15 x 15 Case":
 - 1. East River Units 6 and 7,314 MW in 2015
 - ii. No LOLE violations occur through out the study period due to the low load forecast. A

second case was run using the load forecast used in the "SEPBRNA Case" which is based on achieving only 30% of EEPS. For this condition, an LOLE violation of 0.103 occurs in 2012 and increases to 0.87 in 2018.

- ii. <u>Scenario 2- 30% Renewable Portfolio Standard</u> This scenario is similar to Scenario 1 with the following major differences:
 - a. Only Roseton 1 unit is retired
 - b. 3,543 MW of additional wind capacity located upstate is included.

This scenario was only run for the "SEPB RNA Case". It was found that no LOLE violations occur over the study period.

IV. Summary

The NYISO worked closely with the SEPB's Working Group to support their effort to address the future energy needs for the State. NYISO shared their technical expertise, provided input on the SEPB Working Group's model assumptions and commented on the results. NYISO also completed a Reliability Assessment analysis in order to determine the impact of the recommended capacity modifications on the reliability of the system.

	LOLE Results
SEPB RNA Case	No violation
SEPB 15 x 15 Case	No violation if full 15 x 15 EEPS is
	achieved. A violation in 2012 may occur if
	only 30% of the EEPS is achieved.
Scenario 1: Upstate Nuclear	SEPB RNA Case: A violation occurs in
	2018 if both Roseton Units are retired. No
	violation occurs if at least one Roseton unit
	remains in-service.
	SEPB 15 x 15 Case: No violation if full 15
	x 15 EEPS is achieved. A violation in 2012
	may occur if only 30% of the EEPS is
	achieved.
Scenario 2: 30% Renewable Portfolio	No violation
Standard	

Reliability Assessment Summary

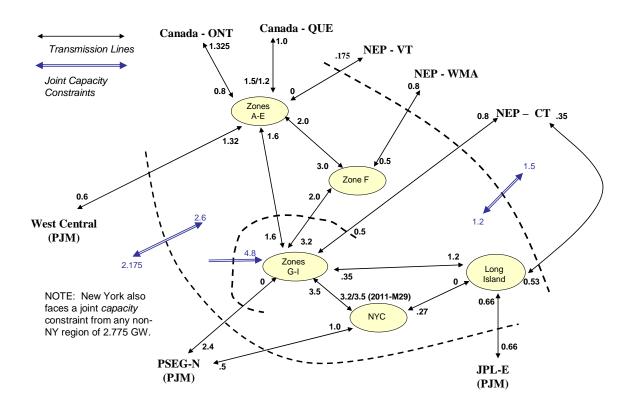
Appendix A: IPM Model Input Assumption Matrix

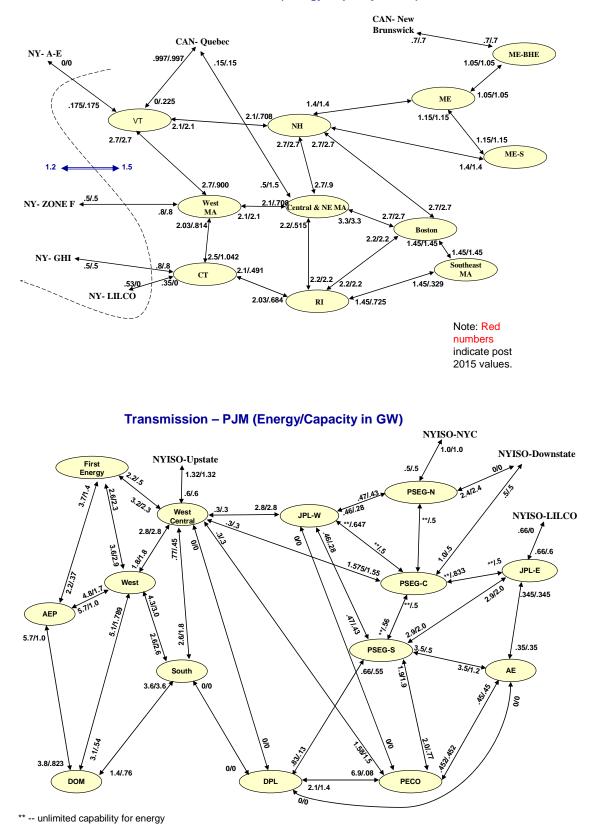
Model Input	Proposed Info.	State of Consensus	Input Status
	Source(s)		
Cost & performance of	EIA Annual	Consensus	≻ To ICF
new generation	Energy Outlook		8/13/08
C	(2008) plus	> Consensus	
	regional		≻ To ICF
	multipliers		8/13/08
	> NETL		
	assumptions for		
	carbon		
	capture/sequest.		
Firmly planned capacity	➢ NYISO 2009	➢ Consensus. Market	> To ICF
Additions/Retirements	RNA base case	solutions excluded.	8/13/08
	assumptions	solutions excluded.	0,10,00
	 ICF's latest data 	Consensus	≻ To ICF
	for other		9/2/08
	regions. NYISO		2/2/00
	providing NERC		
	CP-8 as		
	reference		
Cost and performance	➢ EIA Annual	> Consensus	≻ To ICF
of pollution controls	Energy Outlook		8/13/08
or ponution controls	(2008) plus ICF		0/15/00
	refinements		
D agional paak and load	Initial ~10 years		
Regional peak and load requirements	\rightarrow NYISO 2009	> Consensus	≻ To ICF
requirements	RNA base case		8/13/08
		> Consensus	8/13/08
	assumptions Latest PIM and 	Consensus	≻ To ICF
	ISONE	Consensus.	8/13/08
	projections	Includes partial	א ^ע
	► ICF load	achievement of	➤ Being
	forecasts for	Energy	developed
	remainder of the	Independence and	
	country	Security Act	
	Later run years		\succ To ICF
	Extend NYISO,	Consensus	8/13/08
	ISONE, and		× D .
	PJM growth	Consensus	➤ Being
	rates into later	Includes partial	Developed
	years	achievement of	
	➢ ICF load	Energy	
	forecasts for	Independence and	
	remainder of the	Security Act	
	country		

Model Input	Model Input Proposed Info. Source(s)		Input Status	
Transmission constraints	 NYISO updated values for NY 	> Consensus	> To ICF 8/19/08	
	 and neighboring areas ➢ Firmly planned changes in 	ConsensusConsensus	To ICF 8/19/08	
	 NYISO 2009 RNA base case assumptions ICF's latest data for other regions. NYISO providing NERC CP-8 as reference 		To ICF 9/2/08	
Installed reserve margins and locational requirements	 NYSRC IRM study 2008 (15% State; 80% 	ConsensusConsensus	> To ICF 8/13/08	
	NYC; 94% LI)Other regions: ISOs or equiv.		To ICF 8/13/08	
Fuel Price Forecasts	EEA Henry Hub natural gas under 3-P	ConsensusConsensus	 Being Developed 	
	scenarioICF to use transportation	Consensus	 Loaded in IPM 	
	adders for natural gas for each modeled	Consensus	➤ To ICF 8/13/08	
	zone > EEA WTI (June 2008)	 Consensus 	 Factors loaded in IPM 	
	 ICF to convert WTI to refined product prices at NY Harbor and 	Consensus	Loaded in IPM	
	Gulf Coast ICF to use transportation adders for refined products at each modeled zone		 Loaded in IPM 	

Model Input	Proposed Info. Source(s)	State of Consensus	Input Status
	 Coal price forecasts from ICF 		
Renewable Portfolio Standards	 Current RPSs in Northeast and Mid-Atlantic are met Wind gets capacity payment for 20% of nameplate Limit wind to 10% of regional capacity 	 Consensus Consensus 	 Loaded in IPM Loaded in IPM
RGGI	 10-state RGGI program in place 	> Consensus	Loaded in IPM
Clean Air Interstate Rule	 Guidance from DEC = use old CAIR policy assumptions 	Consensus	 Loaded in IPM
Mercury	 NY unit-level Hg MACT program Other state- specific Hg rules Federal Hg MACT in model run year 2015 	Consensus	 Loaded in IPM Loaded in IPM Loaded in IPM Loaded in IPM
Model run years	 2009 (2008-10); 2012 (2011-13); 2015 (2014-16); 2018 (2017-19); 2021 (2020-22): 2024 (2023-25) 	 Consensus 	➤ To ICF 8/19/08
Proxy for reliability related run times for key generators	 NYISO provided typical weather- normalized data. 	Consensus.	➤ To ICF 9/3/08

Appendix B: Transmission Topology


NYSERDA IPM[®] Reference Case Assumptions: Northeast Regional Transmission Capabilities


Prepared for: NYSERDA for State Energy Plan

> Prepared by: ICF International

September 8, 2008

Transmission – NY (Energy/Capacity in GW)

Transmission – NEPOOL (Energy/Capacity in GW)

Appendix C: NYISO Reliability Assessment

I. MARS Base Case Models

- A. Model Assumptions
 - 1. <u>Study Period</u>

The Reliability Study looks out over a 10 year period from 2009 to 2018. The years studied include 2009, 2012, 2015 and 2018.

2. <u>Base Model</u>

A base model was created by modifying the 2009 Installed Reserve Margin (IRM) model. Modifications to this one year IRM model are necessary in order to include known changes that will take place over the planning period as determined in the 2009 Reliability Needs Assessment (RNA) Base Case. This base model was used as the starting point for creating the two study cases being evaluated. The following modifications were made based to the 2009 Reliability Needs Assessment (RNA) Base Case:

- i. The following generation additions and uprates which were included in the Base Case of the 2009 RNA were added:
 - a. Empire Generating (Besicorp) 660 MW
 - b. Blenheim-Gilboa Unit 1 30 MW
 - c. Blenheim-Gilboa Unit 2: 30 MW
 - d. Nine Mile Point Unit 2: 168 MW
 - ii. The following generator retirements which were included in the Base Case of the 2009 RNA were included:
 - a. Poletti 890.7 MW
 - 3. The transfer limits used in the Base Case of the 2009 RNA were included.
 - 4. All external area loads and capacity data were held constant through out the study period.

B. SEPB RNA Case

1. Load Forecast

The "SEPB RNA Case" utilizes the load forecast used in the 2009 RNA Base Case. This load forecast is based on achieving 30% of the Energy Efficiency Portfolio Standard (EEPS) as shown in Table 1.

	2009	2012	2015	2018
2009 RNA	34,059	34,586	35,029	35,658
Base Case				

Table 1: 2009 RNA Base Case Load Forecast (MW) (Per 2009 RNA Report Table 3-1)

2. <u>Capacity Modifications</u>

Exhibit C-1 includes the capacity modifications provided by the SEPB Working Group for inclusion in the reliability analysis. The generic capacity additions shown as being located in multiple zones were entered into MARS by prorating the values across the zones based on the existing generator capacity type located in those zones. The amount of generic capacity included in each zone is also shown in Exhibit C-1.

Table 2 below summarizes the total capacity changes by generator type as compared to the base model for the "SEPB RNA Case".

Generator Type	SEPB RNA Case Capacity Change as Compared to the Base Model (MW)
Combined Cycle	1,081
Coal	-55
Combustion Turbine	-129
Hydro	191
Landfill Gas	122
Nuclear	106
Oil/Gas	-1,115
Wind	3,603
Overall Total	3,804

Table 2: Capacity Assumptions for the SEPB RNA Case

C. <u>SEBP 15 x 15 Case</u>

<u>Load Forecast</u> The "SEPB 15 x 15 Case" utilizes the load forecast used in Scenario 2 of the 2009 RNA. This load forecast is based on achieving 100% of the EEPS as shown in Table 3.

Table 3: 2009 RNA Scenario 2 Load Forecast (MW) (Per 2009 RNA Report Table 3-1)

	2009	2012	2015	2018
2009 RNA	33,704	32,722	31,227	32,209
Scenario 2				

1. <u>Capacity Modifications</u>

Exhibit C-1 includes the capacity modifications provided by

SEPB Working Group for inclusion in the reliability analysis. The generic capacity additions shown as being located in multiple zones were entered into MARS by prorating the values across the zones based on the existing generator capacity type located in those zones. The amount of generic capacity included in each zone is also shown in Exhibit C-1.

Table 4 below summarizes the total capacity changes by generator type as compared to the Base Model for the "SEPB 15 x 15 Case".

Generator Type	SEPB 15 x 15 Case Capacity Change as Compared to the Base Model (MW)
Combined Cycle	-76
Coal	-55
Combustion Turbine	-129
Hydro	191
Landfill Gas	122
Nuclear	106
Oil/Gas	-1,573
Wind	3,603
Overall Total	2,189

Table 4: Capacity Assumptions for SEPB 15 x 15 Case

II. MARS Results

A. Base Model

For comparison purposes, Table 5 below provides the LOLE results for the Base Model for each NY zone and for the overall NY Control Area (NYCA) for each study year. This is based on the 2009 RNA Base Case load forecast (achieving 30% EEPS) and the capacity values.

	Base Model As Found w/ 30% EEPS			
Zone	2009	2012	2015	2018
Α	0.0	0.0	0.0	0.0
В	0.0	0.0	0.0	0.003
С	0.0	0.0	0.0	0.0
D	0.0	0.0	0.0	0.0
E	0.0	0.0	0.0	0.001
F	0.0	0.0	0.0	0.0
G	0.0	0.0	0.0	0.001
Н	0.0	0.001	0.0	0.001
I	0.001	0.008	0.02	0.079
J	0.001	0.009	0.022	0.091
K	0.001	0.0	0.0	0.001
NYCA	0.001	0.010	0.024	0.096

Table 5: Base Model LOLE

B. <u>SEPB RNA Case</u>

Table 6 below provides the LOLE results for the base "SEPB RNA Case". The resultant LOLE criterion of 0.1 per year is not violated for any area for any study year. Therefore, the SEPB assumed capacity modifications will not negatively impact the State's reliability provided that 30% of the EEPS is achieved. In fact the SEPB capacity modification assumptions improves the LOLE for Zones I, J and NYCA.

Table 0: SEFD KNA Case LULE				
	SEPB RNA Case			
Zone	2009	2012	2015	2018
Α	0.0	0.0	0.0	0.0
В	0.0	0.0	0.0	0.004
С	0.0	0.0	0.0	0.0
D	0.0	0.0	0.0	0.0
E	0.0	0.0	0.0	0.002
F	0.0	0.0	0.0	0.0
G	0.0	0.0	0.0	0.001
Н	0.0	0.0	0.0	0.0
I	0.0	0.002	0.007	0.028
J	0.0	0.003	0.007	0.03
K	0.001	0.0	0.0	0.0
NYCA	0.001	0.003	0.008	0.032

Table 6: SEPB RNA Case LOLE

C. <u>SEPB 15 x 15 Case</u>

Table 7 below provides the LOLE results for the base "SEPB 15 x 15 Case". Even though there is less capacity assumed for this case, the lower load forecast is sufficient enough such that the LOLE drops as compared to the base model or the base "SEPB RNA Case".

However, if the 15 x 15 load forecast is not achieved, reliability violations may occur as early as 2012 for this given capacity condition. Table 8

shows the results based on using the capacity assumptions for the "SEPB 15 x 15 Case" but only achieving the 30% of the EEPS as assumed it the "SEPB RNA Case". This shows that the LOLE would exceed 0.1 by 2012 and would exceed 0.6 by 2018. The primary differences impacting these LOLE results is that the "SEPB 15 x 15 Case" retires nearly 1,000MW more and installs nearly 500MW less in fossil fuel plants than the "SEPB RNA Case". This will result in a much lower reliable system if the loads aren't sufficiently reduced to offset this lack of generation capacity.

Table 7: SEPB 15 x 15 Case LOLE				
	SEPB 15 x 15 Case			
Zone	2009	2012	2015	2018
Α	0.0	0.0	0.0	0.0
В	0.0	0.0	0.0	0.0
С	0.0	0.0	0.0	0.0
D	0.0	0.0	0.0	0.0
E	0.0	0.0	0.0	0.0
F	0.0	0.0	0.0	0.0
G	0.0	0.001	0.0	0.0
Н	0.0	0.0	0.0	0.0
I	0.0	0.006	0.0	0.001
J	0.0	0.005	0.0	0.001
K	0.0	0.0	0.0	0.0
NYCA	0.001	0.007	0.0	0.001

Table 7: SEPB 15 x 15 Case LOLE

	w/ 30% EEPS Load Forecast and SEPB 15							
		x 15 Ca	apacity					
Zone	2009	2012	2015	2018				
Α	0	0	0	0				
В	0	0.006	0.01	0.026				
С	0	0	0	0				
D	0	0	0	0				
E	0	0.001	0.003	0.009				
F	0	0	0	0				
G	0	0.033	0.07	0.203				
Н	0	0.001	0.001	0.001				
-	0	0.096	0.213	0.589				
J	0	0.081	0.181	0.523				
K	0.001	0.001	0.001	0.003				

Table 8: 30% EEPS and SEPB 15 x15 LOLE

D. Scenario 1- Upstate Nuclear Addition

0.001

NYCA

A scenario of adding 1,600 MW of generic nuclear power upstate in 2018 was evaluated. This capacity addition was modeled by prorating the increase among the existing upstate nuclear facilities and adding the

0.102

0.23

0.627

capacity increase to the existing units per Table 9.

Tuble 7. Opstate Adelear Capacity Addition								
Nuclear Unit	Existing Summer	Capacity Addition	New Summer					
	Capacity		Capacity					
Ginna	580	267	847					
Nine Mile Pt Unit 1	690	318	1,008					
Nine Mile Pt Unit 2	1,305	600	1,905					
Fitzpatrick	902	415	1,317					
Total	3,477	1,600	5,077					

Table 9: Upstate Nuclear Capacity Addition

 <u>SEPB RNA Case- Upstate Nuclear Scenario</u> Exhibit C-2 includes the capacity modifications provided by SEPB Working Group for inclusion in the reliability analysis. In addition to the 1,600 MW upstate nuclear addition, this scenario also includes the following changes as compared to the base "SEPB RNA Case":

- i. Retiring of SA Carlson 27MW in 2012
- ii. Retiring of Roseton 1 and 2 1144MW in 2018
- iii. Shifted 20MW of Wind Addition from 2012 to 2015

Table 10 shows the LOLE results for the SEPB RNA Case-Upstate Scenario and indicates that a NYCA LOLE violation of 0.276 would occur in 2018. An LOLE violation in Zones I and J would also occur. This indicates that the addition of the nuclear capacity upstate is not sufficient to offset the retirement of the Roseton 1 and 2 units located downstate due to transmission limitations.

	SEPB RNA Case- Upstate Nuclear Scenario							
Zone	2009	2012	2015	2018				
Α	0.0	0.000	0.000	0.0				
в	0.0	0.000	0.000	0.002				
С	0.0	0.000	0.000	0.0				
D	0.0	0.000	0.000	0.0				
Е	0.0	0.000	0.000	0.001				
F	0.0	0.000	0.000	0.0				
G	0.0	0.000	0.000	0.084				
Н	0.0	0.000	0.000	0.0				
I	0.0	0.002	0.007	0.255				
J	0.0	0.003	0.007	0.223				
K	0.001	0.000	0.000	0.0				
NYCA	0.001	0.003	0.008	0.276				

Table 10: SEPB RNA Case – Upstate Nuclear Scenario LOLE

Two additional runs were completed to determine the impact of retiring the Roseton units. If both Roseton units are kept inservice, the NYCA LOLE reduces to 0.02. If only one unit is retired, the resulting NYCA LOLE would be .071.

 SEPB 15 x 15 Case- Upstate Nuclear Scenario Exhibit C-2 includes the capacity modifications provided by SEPB Working Group for inclusion in the reliability analysis. In addition to the 1,600 MW upstate nuclear addition, this scenario also includes the retirement of East River Units 6 and 7 (314MW) in 2015 as compared to the base "SEPB 15 x 15 Case".

Table 11 shows the LOLE results for the SEPB 15 x 15 Case-Upstate Scenario. No LOLE violations would occur through out the study period due to the low load forecast.

	SEPB 15 x 15 Case- Upstate Nuclear Scenario							
Zone	2009	2012	2015	2018				
Α	0.0	0.000	0.000	0.0				
В	0.0	0.000	0.000	0				
С	0.0	0.000	0.000	0.0				
D	0.0	0.000	0.000	0.0				
E	0.0	0.000	0.000	0				
F	0.0	0.000	0.000	0.0				
G	0.0	0.001	0.000	0.001				
H	0.0	0.000	0.000	0.0				
-	0.0	0.006	0.000	0.003				
J	0.0	0.005	0.000	0.003				
K	0.001	0.000	0.000	0.0				
NYCA	0.001	0.007	0	0.004				

Table 11: SEPB 15 x 15 Case- Upstate Nuclear Scenario LOLE

A second case was run using the load forecast used in the "SEPB RNA Case" which is based on achieving only 30% of EEPS. Table 12 includes the results of this case which shows that a NYCA LOLE violation of 0.103 would occur in 2012 and increases to 0.87 in 2018.

	SEPB 15 x 15 Case- Upstate Nuclear Scenario w/ 30% EEPS Load Forecast							
Zone	2009 2012 2015 20							
Α	0.0	0.000	0.000	0.0				
В	0.0	0.006	0.014	0.003				
С	0.0	0.000	0.000	0.0				
D	0.0	0.000	0.000	0.0				
E	0.0	0.001	0.004	0.001				
F	0.0	0.000	0.000	0.0				
G	0.0	0.033	0.121	0.204				
Н	0.0	0.001	0.002	0.0				
	0.0	0.096	0.427	0.812				
J	0.0	0.080	0.385	0.763				
K	0.001	0.001	0.002	0.0				
NYCA	0.001	0.103	0.461	0.87				

Table 12: 30%	EEPS and SPEB 15 x 15 Case - Upstate
	Nuclear Scenario LOLE

As shown in the base "SEPB 15 x 15 Case", if the full EEPS load forecast is not achieved, a resource adequacy violation would occur. The increase in the NYCA LOLE from .627 in the base "SPEB 15 x 15 Case" to 0.87 in this scenario indicates that adding 1,600 MW nuclear capacity upstate is not sufficient enough to offset the retirement of the East River units located downstate.

E. Scenario 2- 30% Renewable Portfolio Standard

Exhibit C-3 includes the capacity modifications provided by SEPB Working Group for inclusion in the reliability analysis. This scenario is similar to Scenario 1 with the following major differences:

- i. Only Roseton 1 unit is retired
- ii. 3543 MW of additional wind capacity located upstate is included.

This scenario was only run for the "SEPB RNA Case". As shown in Table 13, it was found that no LOLE violations would occur. No further study was completed for this scenario.

	SEPB RNA Case- 30% RPS							
Zone	2009	2012	2015	2018				
Α	0.0	0.000	0.000	0.0				
В	0.0	0.000	0.001	0.001				
С	0.0	0.000	0.000	0.0				
D	0.0	0.000	0.000	0.0				
Е	0.0	0.000	0.000	0				
F	0.0	0.000	0.000	0.0				
G	0.0	0.000	0.000	0.003				
Н	0.0	0.000	0.000	0.0				
I	0.0	0.002	0.007	0.059				
J	0.0	0.002	0.007	0.061				
К	0.001	0.000	0.000	0.0				
NYCA	0.001	0.003	0.008	0.068				

Table 13: 30% Renewable Portfolio Standard Scenario LOLE

III. Summary

- A. Base Cases
 - 1. The capacity modifications as recommended by SEPB through out the study period for the two base cases would not result in an LOLE violation of once in 10 years provided that the corresponding load forecast is achieved. However, if the full energy portfolio standard load forecast is not achieved, then a violation may occur in the "SEPB 15 x 15 Case" starting in year 2012.
- B. Scenario Cases
 - 1. The capacity modifications provided for the SEPB RNA Case- Upstate Nuclear scenario would result in an LOLE violation in 2018 if both Roseton Units are retired. This violation is eliminated if only one unit is retired. No LOLE violation occurs for the SEPB 15 x 15 Case-Upstate Nuclear scenario if the full EEPS is achieved. However, a violation may occur in 2012 if the full load reduction is not achieved.
 - 2. The capacity modifications provided for the SEPB 15 x 15 Case- 30% RPS scenario resulted in no LOLE violations through out the study period.

Exhibit C-1: Base Case Capacity Modifications

State Energy Planning Board Study Capacity Modifications Entered into MARS

Landfill Gas										
RNA Case and 15 x 15 Case Generic										
Capacities per SEPB	2009	2012	2015	2018						
Zone A-E	18.0	53.0	20.0	0.0						
Zone F	5.0	16.0	6.0	0.0						
Zone G-I	1.0	0.0	0.0	0.0						
Zone K	1.0	2.0	0.0	0.0						

		Existing	Prorated	Revised	Prorated	Revised	Prorate	ed	Revised
UNT-MXCP	Zone	Capacity	Additions	Total	Additions	Total	Additio	ns	Total
JAN	A	16.2	4.4	20.6	13.0	33.5	4	4.9	38.4
JAN	В	11.4	3.1	14.5	9.1	23.6		3.4	27.0
JAN	С	29.1	7.9	37.0	23.3	60.3	8	8.8	69.0
JAN	D	4.8	1.3	6.1	3.8	9.9		1.4	11.4
JAN	E	4.8	1.3	6.1	3.8	9.9		1.4	11.4
	Total Zone A-E	66.3	18.0	84.3	53.0	137.3	20	0.0	157.3
MAY	A	15.9	4.1	20.0	12.0	31.9	4	4.5	36.5
MAY	В	11.0	2.8	13.8	8.3	22.1		3.1	25.2
MAY	С	33.9	8.7	42.6	25.5	68.1	Ģ	9.6	77.7
MAY	D	4.8	1.2	6.0	3.6	9.6		1.4	11.0
MAY	E	4.8	1.2	6.0	3.6	9.6		1.4	11.0
	Total Zone A-E	70.4	18.0	88.4	53.0	141.4	20	0.0	161.4
JAN	F	8.4	5.0	13.4	16.0	29.4	(6.0	35.4
MAY	F	8.7	5.0	13.7	16.0	29.7	(6.0	35.7
JAN	Н	0.0	1.0	1.0					
MAY	Н	0.0	1.0	1.0					
	Total Zone G-I	0.0							
JAN	К	1.8	1.0	2.8	2.0	4.8			
MAY	K	1.8	1.0	2.8	2.0	4.8			
Existing Capa	cities are per the 20	09 RNA MARS I	Nodel				-		

	Hydro								
RNA Case and 15 x 15 Case Generic									
Capacities per SEPB	2009	2012	2015 2018						
Zone A-E	25.0	75.0	59.0	0.0					
Zone F	5.0	13.0	14.0	0.0					

		Existing	Prorated	Revised	Prorated	Revised	Prorated	Revised
UNT-MXCP	Zone	Capacity	Additions	Total	Additions	Total	Additions	Total
JAN	Α	0.2	0.0	0.2	0.0	0.2	0.0	0.2
JAN	В	56.1	1.9	58.0	5.8	63.8	4.5	68.3
JAN	С	115.0	3.9	118.9	11.8	130.8	9.3	140.1
JAN	D	75.1	2.6	77.7	7.7	85.4	6.1	91.5
JAN	E	483.4	16.6	500.0	49.7	549.6	39.1	588.7
	Total Zone A-E	729.8	25.0	754.8	75.0	829.8	59.0	888.8
MAY	A	3.2	0.1	3.3	0.4	3.8	0.3	4.1
MAY	В	32.1	1.5	33.6	4.4	38.0	3.5	41.5
MAY	С	72.0	3.3	75.3	9.9	85.2	7.8	93.0
MAY	D	71.0	3.3	74.3	9.8	84.0	7.7	91.7
MAY	E	366.9	16.8	383.7	50.5	434.2	39.7	473.9
	Total Zone A-E	545.2	25.0	570.2	75.0	645.2	59.0	704.2
JAN	F	449.2	5.0	454.2	13.0	467.2	14.0	481.2
				397.2		410.2	14.0	424.2

Existing Capacities are per the 2009 RNA MARS Model

Wind								
RNA Case Generic Capacities per SEPB	2009	2012	2015	2018				
Zone A-E	1368.0	1389.0	565.0	53.0				
Zone F	34.0	100.0	34.0					

	Zone	Existing Capacity	Prorated Additions	Revised Total	Prorated Additions	Revised Total	Prorated Additions	Revised Total	Prorated Additions	Revised Total
JAN	A	121.4	136.6	258.0	138.7	396.8	56.4	453.2	5.3	458.5
JAN	С	212.2	238.9	451.1	242.6	693.7	98.7	792.4	9.3	801.6
JAN	D	513.3	577.8	1091.0	586.7	1677.7	238.6	1916.3	22.4	1938.7
JAN	E	368.4	414.7	783.0	421.0	1204.1	171.3	1375.3	16.1	1391.4
-	Total Zone A-E	1215.2	1368.0	2583.2	1389.0	3972.2	565.0	4537.2	53.0	4590.2
JAN	F	0.0	34.0	34.0	100.0	134.0	34.0	168.0		
15 x 15 Cas	e Generic Capacities	per SEPB	20	09	20	12	20	15	20	18
	Zone A-E		1368.0		92	928.0		1027.0		3.0
	Zone F		34	.0	10	0.0	34	.0		

	Zone	Existing Capacity	Prorated Additions	Revised Total	Prorated Additions	Revised Total	Prorated Additions	Revised Total	Prorated Additions	Revised Total
JAN	A	121.4	136.6	258.0	92.7	350.7	102.6	453.3	5.3	458.6
JAN	С	212.2	238.9	451.1	162.1	613.2	179.4	792.6	9.3	801.8
JAN	D	513.3	577.8	1091.0	391.9	1483.0	433.8	1916.7	22.4	1939.1
JAN	E	368.4	414.7	783.0	281.3	1064.3	311.3	1375.6	16.1	1391.7
	Total Zone A-E	1215.2	1368.0	2583.2	928.0	3511.2	1027.0	4538.2	53.0	4591.2
JAN Existing Cap	F F pacities are per the 200	0.0 09 RNA MARS I	34.0 Model	34.0	100.0	134.0	34.0	168.0		

Exhibit C-2: Scenario 1 Capacity Modifications

				N	uclear					
	15 x 15 Case Gene									
•	es per SEPB Upstat	e Firm				40				4.0
luclear s	Scenario		20	09	2012		20	15	20'	-
	Zone A-E								160	0.0
		Existing	Prorated	Revised	Prorated	Revised	Prorated	Revised	Prorated	Revised
	Zone	Capacity*	Additions	Total	Additions	Total	Additions	Total	Additions	Total
IAN	А	0.0								
IAN	B- Ginna	583.4							266.9	850.
IAN	C- Nine Mile Pt 1	692.8							317.0	1009.
IAN	C- Nine Mile Pt 2	1318.0							603.0	1921.
IAN	C- Fitzpatrick	903.1							413.2	1316.
IAN	Ď	0.0								
IAN	E	0.0								
	Total Zone A-E	3497.3	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	5097.
		Existing	Prorated	Revised	Prorated	Revised	Prorated	Revised	Prorated	Revised
	Zone	Capacity*	Additions	Total	Additions	Total	Additions	Total	Additions	Total
/AY	A	0.0								
1AY	B- Ginna	580.1							267.0	847.
/AY	C- Nine Mile Pt 1	690.0							317.5	1007.
ЛАY	C- Nine Mile Pt 2	1304.7							600.4	
ЛАҮ ЛАҮ	C- Nine Mile Pt 2 C- Fitzpatrick	1304.7 901.9							600.4 415.1	
MAY MAY MAY	C- Nine Mile Pt 2 C- Fitzpatrick D	1304.7 901.9 0.0								
IAY IAY IAY	C- Nine Mile Pt 2 C- Fitzpatrick	1304.7 901.9 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	415.1	1905. 1317. 5076.
AAY AAY AAY AAY	C- Nine Mile Pt 2 C- Fitzpatrick D E	1304.7 901.9 0.0 0.0 3476.7			0.0	0.0	0.0	0.0		1317.
NAY NAY NAY NAY	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E	1304.7 901.9 0.0 0.0 3476.7			0.0	0.0	0.0	0.0	415.1	
IAY IAY IAY IAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values inclu	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide		e Cases	0.0	0.0	0.0	0.0	415.1	1317.
AAY AAY AAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values inclu	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide		e Cases			0.0		415.1	1317. 5076 .
AAY AAY AAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values inclu	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide	entified in Bas	e Cases	Vind	12		15	415.1 1600.0	1317. 5076.
AAY AAY AAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values incluse Generic Capacitie Destate Nuclear Scen	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide	entified in Bas	e Cases 09 8.0	Wind 20	12 66.0	20	15 3.0	415.1 1600.0 20 ⁻	1317. 5076.
AAY AAY AAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values incluse e Generic Capacitie postate Nuclear Scen Zone A-E	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide	entified in Bas	e Cases 09 8.0	Vind 20 136	12 66.0	20 588	15 3.0	415.1 1600.0 20 ⁻	1317. 5076.
AAY AAY AAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values incluse e Generic Capacitie postate Nuclear Scen Zone A-E	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide	entified in Bas	e Cases 09 8.0	Vind 20 136	12 66.0	20 588	15 3.0	415.1 1600.0 20 ⁻	1317. 5076. 18 .0
AAY AAY AAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values incluse e Generic Capacitie postate Nuclear Scen Zone A-E	1304.7 901.9 0.0 3476.7 ude Uprates ide	20 136 34	09 88.0 .0	Vind 20 136 100	12 56.0 0.0	20 588 34	15 3.0 .0	415.1 1600.0 20 ⁷ 53	1317. 5076. 18 .0
MAY MAY MAY Existing RNA Cas SEPB Up	C- Nine Mile Pt 2 C- Fitzpatrick D Total Zone A-E capacity values inclu e Generic Capacitie Destate Nuclear Scen Zone A-E Zone F	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide es per nario	20 20 136 34 Prorated	09 88.0 .0 Revised	Vind 20 136 100 Prorated	12 66.0 0.0 Revised Total 394.5	20 588 34 Prorated	15 3.0 .0 Revised	415.1 1600.0 20 ⁷ 53 Prorated	1317. 5076. 18 .0 Revised Total
AAY AAY AAY Existing RNA Cas SEPB Up	C- Nine Mile Pt 2 C- Fitzpatrick D Total Zone A-E capacity values inclu capacity values	1304.7 901.9 0.0 3476.7 ude Uprates ide es per aario Existing Capacity	20 136 34 Prorated Additions	09 8.0 .0 Revised Total	Vind 20 136 100 Prorated Additions	12 56.0 0.0 Revised Total	20 588 34 Prorated Additions	15 3.0 .0 Revised Total	415.1 1600.0 20 53 Prorated Additions	1317. 5076. 18 .0 Revised Total 458.
AAY AAY AAY Existing	C- Nine Mile Pt 2 C- Fitzpatrick D Total Zone A-E capacity values inclu capacity capacities capacity capacities ca	1304.7 901.9 0.0 3476.7 ude Uprates ide es per nario Existing Capacity 121.4	20 20 136 34 Prorated Additions 136.6	e Cases 09 8.0 .0 Revised Total 258.0	Vind 20 136 100 Prorated Additions 136.4	12 6.0 0.0 Revised Total 394.5	20 588 34 Prorated Additions 58.7	15 3.0 .0 Revised Total 453.2	415.1 1600.0 20 ⁷ 53 Prorated Additions 5.3	1317. 5076. 18 .0 Revised
AAY AAY AAY Existing RNA Cas SEPB Up AN AN	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values inclu ise Generic Capacitie ostate Nuclear Scen Zone A-E Zone F Zone F A C D E	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide es per ario Existing Capacity 121.4 212.2 513.3 368.4	20 136 34 Prorated Additions 136.6 238.9 577.8 414.7	09 88.0 .0 Revised Total 258.0 451.1 1091.0 783.0	Vind 136 100 Prorated Additions 136.4 238.6 576.9 414.1	12 600 000 Revised Total 394.5 689.7 1668.0 1197.1	20 588 34 Prorated Additions 58.7 102.7 248.3 178.2	15 3.0 .0 Revised Total 453.2 792.4 1916.3 1375.3	415.1 1600.0 20 53 Prorated Additions 5.3 9.3 22.4 16.1	1317. 5076. 18 .0 Total 458. 801. 1938. 1391.
AAY AAY AAY Existing RNA Cas SEPB Up AN AN	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values inclu ise Generic Capacitie isstate Nuclear Scen Zone A-E Zone F Zone F A C D	1304.7 901.9 0.0 3476.7 ude Uprates ide es per ario Existing Capacity 121.4 212.2 513.3	20 136 34 Prorated Additions 136.6 238.9 577.8	e Cases 09 8.0 .0 Revised Total 258.0 451.1 1091.0	Vind 20 136 100 Prorated Additions 136.4 238.6 576.9	12 6.0 0.0 Revised Total 394.5 689.7 1668.0	20 588 34 Prorated Additions 58.7 102.7 248.3	15 3.0 .0 Revised Total 453.2 792.4 1916.3	415.1 1600.0 20 53 Prorated Additions 5.3 9.3 22.4	1317. 5076. 18 .0 Total 458. 801. 1938. 1391.
AY AY AY Existing EXISTING EXISTING AN AN AN	C- Nine Mile Pt 2 C- Fitzpatrick D E Total Zone A-E capacity values inclu ise Generic Capacitie ostate Nuclear Scen Zone A-E Zone F Zone F A C D E	1304.7 901.9 0.0 0.0 3476.7 ude Uprates ide es per ario Existing Capacity 121.4 212.2 513.3 368.4	20 136 34 Prorated Additions 136.6 238.9 577.8 414.7	09 88.0 .0 Revised Total 258.0 451.1 1091.0 783.0	Vind 136 100 Prorated Additions 136.4 238.6 576.9 414.1	12 66.0 0.0 Revised Total 394.5 689.7 1668.0 1197.1 3949.2	20 588 34 Prorated Additions 58.7 102.7 248.3 178.2	15 3.0 .0 Revised Total 453.2 792.4 1916.3 1375.3	415.1 1600.0 20 53 Prorated Additions 5.3 9.3 22.4 16.1	1317. 5076. 18 .0 Revised Total 458. 801.

Exhibit C-3: Scenario 2 Capacity Modifications

State Energy Planning Board Study Generic Capacity Modifications Entered into MARS 30% RPS Scenario

Landfill Gas									
RNA Case Generic Capacities per									
SEPB 30% RPS	2009	2012	2015	2018					
Zone A-E	19.0	53.0	19.0	0.0					
Zone F	5.0	16.0	6.0	0.0					
Zone G-I	1.0	0.0	0.0	0.0					
Zone K	1.0	2.0	0.0	0.0					

		Existing	Prorated	Revised	Prorated	Revised	Prorated	Revised
UNT-MXC	P Zone	Capacity	Additions	Total	Additions	Total	Additions	Total
JAN	A	16.2	4.6	20.8	13.0	33.8	4.6	38.4
JAN	В	11.4	3.3	14.7	9.1	23.8	3.3	27.0
JAN	С	29.1	8.3	37.4	23.3	60.7	8.3	69.0
JAN	D	4.8	1.4	6.2	3.8	10.0	1.4	11.4
JAN	E	4.8	1.4	6.2	3.8	10.0	1.4	11.4
	Total Zone A-E	66.3	19.0	85.3	53.0	138.3	19.0	157.3
MAY	A	15.9	4.3	20.2	12.0	32.2	4.3	36.5
MAY	В	11.0	3.0	14.0	8.3	22.3	3.0	25.2
MAY	С	33.9	9.1	43.0	25.5	68.6	9.1	77.7
MAY	D	4.8	1.3	6.1	3.6	9.7	1.3	11.0
MAY	E	4.8	1.3	6.1	3.6	9.7	1.3	11.0
	Total Zone A-E	70.4	19.0	89.4	53.0	142.4	19.0	161.4
JAN	F	8.4	5.0	13.4	16.0	29.4	6.0	35.4
MAY	F	8.7	5.0	13.7	16.0	29.7	6.0	35.7
JAN	н	0.0	1.0	1.0				
MAY	Н	0.0	1.0	1.0				
	Total Zone G-I	0.0		•				
JAN	К	1.8	1.0	2.8	2.0	4.8		
MAY	K	1.8	1.0	2.8	2.0	4.8		
Existing Ca	apacities are per th	e 2009 RNA MA	RS Model					

Hydro									
RNA Case Case Generic Capacities per									
SEPB 30% RPS	2009		2012		2015		2018		
Zone A-E	32.0		75.0		52.0		0.0		
Zone F	7.0	1	13.0		12.0		0.0		

UNT-MXC	P Zone	Existing Capacity	Prorated Additions	Revised Total	Prorated Additions	Revised Total	Prorated Additions	Revised Total
JAN	A	0.2	0.0	0.2	0.0	0.2	0.0	0.2
JAN	В	56.1	2.5	58.6	5.8	64.3	4.0	68.3
JAN	С	115.0	5.0	120.0	11.8	131.9	8.2	140.1
JAN	D	75.1	3.3	78.4	7.7	86.1	5.4	91.5
JAN	E	483.4	21.2	504.6	49.7	554.3	34.4	588.7
	Total Zone A-E	729.8	32.0	761.8	75.0	836.8	52.0	888.8
MAY	A	3.2	0.2	3.4	0.4	3.8	0.3	4.1
MAY	В	32.1	1.9	34.0	4.4	38.4	3.1	41.5
MAY	С	72.0	4.2	76.2	9.9	86.1	6.9	93.0
MAY	D	71.0	4.2	75.2	9.8	84.9	6.8	91.7
MAY	E	366.9	21.5	388.4	50.5	438.9	35.0	473.9
-	Total Zone A-E	545.2	32.0	577.2	75.0	652.2	52.0	704.2
JAN	F	449.2	7.0	456.2	13.0	469.2	12.0	481.2
MAY	F	392.2	7.0	399.2	13.0	412.2	12.0	424.2
Existing Ca	apacities are per th	e 2009 RNA MA	RS Model		-			

isting Capacities are per the 2009 RNA MARS Model